Hero image

516Uploads

198k+Views

106k+Downloads

Design a robot to draw lines on a pitch
IETEducationIETEducation

Design a robot to draw lines on a pitch

(0)
Sketching an idea and writing a microcontroller program for the line painting robot to follow This resource focusses on robotics engineering where learners design and write a program for a robot that could mark out the pitch lines for a game of football. Students will produce a labelled sketch of their idea and write a microcontroller program for the electronic aspects of the robot. This is one of a series of resources that are designed to allow learners to use the theme of sports to develop their knowledge and skills in Design & Technology and Engineering. The teacher will introduce the theme of playing football on the moon and the challenges that would be faced when doing this, before explaining the robot design worksheet and task ahead to design and assemble their robot and then program it to complete the task assigned. This activity is designed to take between 90-140 minutes. Tools/resources required Pens, pencils and coloured pencils Crumble controller board and USB download cable Three red crocodile clips and three black crocodile clips Three AA batteries and battery pack Two Crumble motors Crumble software and computer hardware for programming The engineering context Electrical, electronic and control engineers need to have knowledge, understanding and skills associated with circuit design and assembly, and the programming of electronic control systems. Travelling and potentially living on the moon presents all sorts of challenges for engineers to overcome. For example, how will we breathe, how will we cope with much lower gravity, how will we play sports and keep fit? Suggested learning outcomes By the end of this free resource students will be able to understand the challenges of living and playing football on the moon; be able to produce a labelled sketch of a design for a moon based pitch marker robot and be able to write a program for the electronics of the orbit, so it can mark out the pitch. All activity sheets and supporting resources to design a robot are free online to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Create a foldable football goal
IETEducationIETEducation

Create a foldable football goal

(0)
Designing and making a foldable goal that could be transported to and used in Lunar football matches In this activity learners will make use of the theme of football on the moon to design and make a model of a foldable goal for use in a Lunar league football game. They will consider the issues with playing football on the moon and transporting equipment to it. They will then design and make a model of a goal that could be folded into a tube for transport, then opened up and used. This is one of a series of resources that are designed to allow learners to use the theme of football on the moon to develop their knowledge and skills in Design & Technology and Engineering. This resource focusses on learners designing and making a model of a foldable goal that could be transported to, and then used for a game of football on the moon. The teacher will introduce the theme of playing football on the moon and the challenges that would be faced when doing this, before explaining the design brief and task ahead to design, make and test a model goal. This activity can be simplified (particularly for less able students) by providing templates for the shape of the goals and/or pre-cutting the straws and string into required sizes. As an extension students could organise a Lunar Football League with other groups in the school; design and make a model of a space rocket to get your goals to the moon and/or design foldable equipment for other sports, such as Rugby goals or a cricket sightscreen. This activity is designed to take between 60-100 minutes. Tools/resources required Paper straws Scissors String (or wool) Ruler Pencils A bamboo skewer or similar thin rod Sticky tape A cardboard tube (E.g. the inside of a cling-film/tin foil roll) A small ball, such as a table tennis ball The engineering context Travelling and potentially living on the moon presents all sorts of challenges for engineers to overcome. For example, how will we breathe, how will we cope with much lower gravity, how will we play sports and keep fit? Suggested learning outcomes By the end of this free resource students will be able to understand the challenges of living and playing football on the moon; design and make a model of a foldable goal; and understand the function of different shapes of structure. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Sustainable lighting design
IETEducationIETEducation

Sustainable lighting design

(0)
Design and make a sustainably powered light This fun engineering project for KS3 will allow students to embrace sustainable engineering as they learn to combine scientific principles with artistic flair to craft their unique and planet-friendly light. This activity could be used as a main lesson to teach about the benefits of using renewable energy and how it can help solve social problems. It could also be used as part of a wider scheme of learning focussing on sustainability and the 6Rs (rethink, refuse, reduce, reuse, recycle, repair). Approximately 1 billion people worldwide, or 15% of the total population, have no access to mains electricity. How could a lamp be powered for children living in these conditions to enable them to read and study at night? What you will need Hi-bright light emitting diodes (LEDs). Block connectors with two pin connections at either end, or solder and soldering equipment. Insulation tape. Red and black wires or crocodile clips. A low power DC generator/motor (a motor working in reverse acts as a generator). Pre-made or purchased turbine blades to attach to the generator. The engineering context Engineers bear a social and ethical obligation to consider the environmental impact when addressing design challenges. Understanding how to generate greener energy is imperative for aspiring electrical or electronic engineers, given that the renewable energy sector is one of the rapidly expanding industries in the field of engineering. Suggested learning outcomes By the end of this activity, students will be able to understand what is meant by, and the need for, renewable energy. They will be able to design and make a sustainably powered light, and they will understand how wind turbines work. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Design the trainers of the future
IETEducationIETEducation

Design the trainers of the future

(0)
Designing footwear for sports use Trainers are one of the most commonly worn shoes in our culture. They provide comfortable support for our feet as we go about our active lives as students, athletes, educators and engineers. The design of trainers (and all athletic shoes) is based on how they will be used and is an example of bioengineering. This activity introduces the concept of research through product analysis to support the design process. The main activity involves designing a trainer. Activity info, teachers’ notes and curriculum links In this activity, learners will use the theme of the London Marathon to respond to a design context, investigate existing products for inspiration and design a trainer. This activity could be used as a main lesson activity to develop skills in designing. It could also be used to introduce the review of existing products to inspire design solutions. Tools/resources required Pens, pencils and drawing instruments Variety of trainers/shoes for comparison The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales. All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your learning highlights and final creations with us on social media @IETeducation
Analogue and digital
IETEducationIETEducation

Analogue and digital

(0)
From founding communications, such as the fire beacon, to being able to communicate with space, there is no denying that developments in communication have advanced at a rapid speed. This topic presents students with communications of the past, present and future, helping them to understand the principles that form the basis for these developments. Activity info, teachers’ notes and curriculum links An engaging activity introducing students to the differences between analogue and digital communication. An analogue signal can be rendered useless by small amounts of interference, whereas a digital signal remains coherent. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Make a shadow puppet for Halloween
IETEducationIETEducation

Make a shadow puppet for Halloween

(0)
Learn how to make a shadow puppet for Halloween using card, craft sticks and sticky tape This resource focuses on making shadow puppets and developing supporting knowledge about the relationship between light and shadow. This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within design and technology and science. This could be used as a one-off activity in D&T or science and is designed to be carried out individually. The ‘character’ for the puppet made by each learner could be based on personal preference or could be linked to learning in literacy – for example, a character from ‘Wind in the Willows’ if that book is being studied. If linked in this way, the activity could be carried out in small teams, with each team member making a different character from the story. Additional time could be allowed to research the character for the puppet. The shape of the puppet could be taken from the associated handout, from outlines of images found on the internet, or drawn by hand by the learners. This is an engaging and practical exercise for KS2 that will develop students’ science knowledge and encourage their creativity. How long will this activity take? This activity will take approximately 20-40 minutes to complete. It should be noted that there are options presented in the activity sheet which could extend the time needed to carry out this activity. Tools/resources required Card (photocopies of handouts, if used) Masking tape Craft sticks Tracing paper (for screen) Large boxes (for extension activity) Scissors Torches The engineering context Engineers need to understand how light behaves when designing products for many practical applications. For example, when designing buildings, they may consider the provision of windows and artificial lighting; and when designing cars, they may consider the power and position of both internal and external lights and the placement of mirrors. Suggested learning outcomes By the end of this activity students will know that blocking the path of light causes a shadow and to be able to use scissors to make a graphic product. This resource focuses on making shadow puppets and developing supporting knowledge about the relationship between light and shadow. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
History of flight
IETEducationIETEducation

History of flight

(0)
Make a hanging-mobile timeline of the history of flight. In this engaging activity, learners will produce a timeline for the history of crewed flight. Rather than the conventional linear timeline, this version is presented as a hanging mobile. They will carry out research to identify the important technological advances and dates, then use this to create the images hung on the mobile. This could be used as a one-off main lesson activity to develop understanding that products and technologies change over time, or to build knowledge and understanding of flight. You will need: Access to internet or other appropriate research facilities Card Pencil & pens Scissors Sticky tape Cotton or string Coat hanger All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. And please do share your learning highlights and final creations with us on social media @IETeducation
Investigating simple linkages
IETEducationIETEducation

Investigating simple linkages

(1)
Looking at linkages using card models In this activity pupils will make models of three simple linkages from card. This is a fun STEM activity and a great way for KS2 to learn all about simple linkages. This resource could be used as a stand-alone activity or as an introduction to a design and make project, such as a greetings card with moving parts, a moving poster or display or a ‘grabber’ to pick things up. Activity: It can be advantageous to use a hole punch to create the holes where needed as this reduces the risk of tearing. Alternatively, the holes could be made by pushing through the card with a sharp pencil, into a piece of modelling clay. If tearing does occur, this can be addressed by using sticky tape on the rear of the part or background. For a moving pivot, the fastener goes through the two moving card parts and is opened up; for a fixed pivot, the fastener goes through a moving part and the background is opened up. Guides can be attached using sticky tape at each end. Whilst glue could be used, in practice this may not provide a sufficiently strong joint. As an extension activity students could produce a composite linkage that changes a single input motion into different types of output motion. Alternatively, students could create a moving model of an animal. The presentation can be downloaded below and includes detailed images for the making tasks plus additional support information for the teacher, such as examples of linkages made by pupils. Tools/resources required Copies of the linkages handout, printed on card, 1 per pupil (plus spares) Scissors Sticky tape Glue sticks Optional: Hole punches (ideally single hole punches) Pre-made models of each linkage, for demonstration The engineering context A mechanism is a group of parts that allow or change movement in some way. In practice almost all products that contain moving parts – ranging from scissors to pop-up books to car engines – include some form of mechanism. Suggested learning outcomes By the end of this activity students will be able to identify the parts of a linkage, they will know how simple linkages change the direction of motion and they will be able to cut and assemble simple linkages using card and scissors. Download the activity sheets for free! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Iterative design poster
IETEducationIETEducation

Iterative design poster

(0)
Primary classroom poster exploring the process involved in iterative design. To order your completely free posted pack, please visit the IET Education website.
Smart materials
IETEducationIETEducation

Smart materials

(0)
Identifying which materials might offer the best prospects for a financial investment In this activity, students will investigate the properties of different types of smart materials and decide which ones might offer the best prospects for financial investment. The development of new materials with incredible properties is changing the way we live. From 4K TVs to super light airliners, these materials have quickly found their way into the modern technology around us. One area where modern materials have made a huge impact is in the development of prosthetic devices. Some of these devices are beginning to outperform ‘natural’ body parts. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (DT) and science. Activity: Identifying which materials might offer the best prospects for a financial investment Learners will investigate the properties of different categories of smart materials and decide which kinds of materials might offer the best prospects for a financial investment. Students work in teams and present their results to the rest of the class. The activity offers strong opportunities for cross-curricular work with Enterprise. This activity can be extended with a related practical session ‘Smart and modern materials’, where students identify a material from its particular properties. The engineering context Smart materials are often at the forefront of engineering and technological innovation with engineers using them to create products that are more durable, adaptable and more efficient to manufacture. From building structures that can withstand earthquakes to designing prosthetics that outperform human body parts, the applications of smart materials are vast (and continually expanding!). By learning about smart materials, students will get an insight into how these modern materials are made, used and how they can be applied to real world issues such as improving people’s lives. Suggested learning outcomes This lesson will teach students how to recall a variety of different examples of smart materials and describe how their properties react to changes in their environment. They’ll also be able to investigate smart materials on both a theoretical and practical level, understanding their applications as well as their investment potential. Download our activity sheet for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download (including film clips!), and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation
How do animals use sound
IETEducationIETEducation

How do animals use sound

(0)
How sounds travel as waves of different frequencies and wavelengths From founding communications, such as the fire beacon, to being able to communicate with space, there is no denying that developments in communication have advanced at a rapid speed. This topic presents students with communications of the past, present and future, helping them to understand the principles that form the basis for these developments. This engaging STEM activity is aimed at KS3 students and deals with how animals use sounds and how sounds change in natural phenomena. This is so a student can understand how sound waves travel. The teacher will first distribute a copy of the ‘Animal Sounds’ handout, which can be downloaded below, to each student. Make sure students understand sound is a longitudinal wave of compressions and rarefactions of the material. Soundwaves follow the laws of wave behaviour, so they are a useful introduction to wave properties. This activity can be simplified (particularly for less able students) by creating a discussion on why different animals have different hearing ranges and their experience of phenomena such as the Doppler effect. Use the handout to discuss different sounds and what they might have learned in other lessons (e.g. music) about pitch, frequency, amplitude etc. As an extension students could produce a display from low to high frequency, showing where the sound ranges used by different animals lie. Students could consider how sounds outside the normal spectrum could be used to develop new products. For example, to make ‘silent’ devices to broadcast sound or data between two points. This is a quick and simple activity that will take approximately 15 minutes. The engineering context Sounds are vibrations travelling through materials. Many animals make sounds, either for communication or for location. Sound travels at different speeds in different materials. Generally, the denser the material, the faster the sound will travel. Sound is a longitudinal wave of compressions and rarefactions of the material (a rarefaction involves particles in the material being more spread out than usual). Sound waves follow the laws of wave behaviour, so they are a useful introduction to wave properties. Suggested learning outcomes By the end of this free resource students will know that sound is produced by objects vibrating and they will understand that sound is a longitudinal wave. They will also know about the range of frequencies that can be heard by humans and other animals and they will understand that sound travels at different speeds in different mediums. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please share your classroom learning highlights with us @IETeducation
Egg drop challenge
IETEducationIETEducation

Egg drop challenge

(0)
A challenge to protect an egg from breaking after it is dropped from height. In this fun STEM egg drop challenge students will use, make, and assemble a protective structure to save an egg from breaking. This activity is aimed at secondary school students and could be used as a main lesson activity, to teach learners about the strength of structural forms. It could also be used as one of several activities within a wider scheme of learning focusing on gravity. The Egg Drop Challenge is a popular and versatile Easter STEM challenge. It is an exciting and engaging way for children to develop their creative thinking and problem-solving skills. This STEM challenge is one of a series of free resources designed to allow learners to use Easter themes to develop their knowledge and skills in Design and Technology and Engineering. This resource focuses on the egg drop challenge. Sheets of paper are used to make a protective structure to prevent an egg being broken when dropped from height. Once the egg protection frame has been built learners will test their structures by dropping the egg first from 0.5m, then 1m. If your egg survives this fall, how high do you think an egg can be dropped from without breaking? How could you improve your design to make it more effective? If using raw eggs, it is recommended that plastic covering is used on the floor and suitable hand washing facilities are available. One option is to use boiled eggs as these will reduce the mess but still crack on impact. This activity will take approximately 60-90 minutes. Tools/resources required Projector/whiteboard Raw eggs/Boiled eggs Scissors Glue sticks Paper Tissue paper Sticky tape String Plastic bags The engineering context Understanding how structures are used to protect products is an important part of the new GCSE courses in Design and Technology and Engineering. Structures are used to protect many products, ranging from eggs to supplies dropped from aircraft during emergencies. Suggested learning outcomes By the end of this exercise students will know that gravity is a pulling force and they will be able to make a structure to protect an egg dropped from a height. Download the free Egg Drop Challenge activity sheets, including a bonus crossword using the words used in the activity to enhance learning. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Pedometer design
IETEducationIETEducation

Pedometer design

(1)
Discuss the design of a step counter from the perspective of the engineer and the customer In this unit learners will integrate a BBC micro:bit based programmable system into a complete and commercially viable step counter product that will aid people aiming to walk a certain amount per day. What is the BBC micro:bit? This activity is one of a series of resources to support using the BBC micro:bit in Design and Technology lessons. The BBC micro:bit is a compact, pocket-sized programmable device designed to introduce coding and digital creativity to young learners. Packed with sensors, buttons, and a LED display, the micro:bit enables hands-on exploration of coding concepts through its user-friendly interface. Created as part of the BBC’s “Make It Digital” initiative, the micro:bit empowers students to bring their ideas to life by programming animations, games, and interactive projects. Its versatility and ease of use make it a valuable tool for teaching computational thinking and fostering innovation among beginners, encouraging them to engage with technology and develop essential digital skills. The engineering context This subject serves as an excellent focal point for instructing students about programmable components and the incorporation of embedded intelligence within products. These aspects align with the core elements outlined in the 2014 curriculum for Design and Technology at key stage 3. Furthermore, it presents a valuable opportunity to leverage the BBC micro:bit within the classroom environment, enhancing learners’ product integration abilities. Suggested learning outcomes Upon completing this task, students will be able to analyse and deliberate upon current products from the standpoint of the product engineer and the customer. Additionally, they will comprehend the distinct roles of individuals engaged in the design and production processes. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
micro:bit poster
IETEducationIETEducation

micro:bit poster

(0)
Secondary classroom poster giving a quick look at the individual components of the BBC micro:bit and how you can use it in your classroom. Download the single poster or order a full set of posters for free from the IET Education website.
Product design: create an ergonomic shopping bag
IETEducationIETEducation

Product design: create an ergonomic shopping bag

(1)
Designing an ergonomic shopping bag carrier for older adults In this activity students will design an ergonomic product aimed at older adults aged 60 and above. They will make use of anthropometric data to ensure that the product is fit for purpose. It’s an ideal product design lesson as it focusses on how ergonomics and anthropometric data can be used for making a shopping bag. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in design and technology (DT). Our teaching resources explain the concepts of ergonomics and anthropometrics. Using this information students will design a product that assists with carrying several shopping bags in just one hand, ensuring it’s ergonomically designed for the carrier’s comfort. They’ll use anthropometric data to tailor the product to the target audience while considering its aesthetic appeal. After sketching and annotating their shopping bag designs, students share their work with a partner who will give feedback on what works well as well as what might be improved. Download our activity overview and presentation and ergonomic product design handout for a detailed lesson plan for teaching students about ergonomic design. What does anthropometric mean in design and technology (DT)? In design and technology (DT), anthropometric data refers to measurements of the human body. This might include measurements like hand size, height, and limb proportions. When students design products, they can use anthropometric data to ensure their product designs are comfortable, safe, and efficient for the intended users. The engineering context Designers must consider how people will interact with their products and systems. The use of ergonomics and anthropometric data allows them to make sure their products are comfortable and efficient to use. Suggested learning outcomes Students will be able to design an ergonomic product (specifically, a shopping bag) that meets the needs of older adults. They’ll understand what is meant by anthropometric data and be able to use it for aid the design of a product. They’ll also be able to communicate their design ideas using sketches, notes and annotations. Download our activity sheet and related teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation.
Microchip technology
IETEducationIETEducation

Microchip technology

(1)
Is it ethical to use microchip implants in pets and people? Living in a highly technological world, where access to information and entertainment is at our fingertips, the Inform and Entertain Me topic is a gateway to engage and introduce students to the principles and technology that form the basis for communication devices that are used in our everyday lives. Activity info, teachers’ notes and curriculum links This engaging activity introduces students to the use of RFID technology. They investigate extensions to the use of such technology in various contexts. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Engineered materials
IETEducationIETEducation

Engineered materials

(1)
This activity focuses upon how materials have been specifically engineered to provide certain qualities and characteristics. Learners will explore a range of engineered, synthetic, and smart materials, identifying why they are ‘fit for purpose’ and how they have been engineered to achieve this purpose. Children will delve into learning about the chemical, physical and mechanical properties of their chosen material. Not only will they learn about what the material looks like, both visually and at a molecular level, but also what it was designed to do, how it’s made, what it’s used for, and if its function has evolved over time. This is one of a set of resources developed to support the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within science and design and technology (DT). Activity: Researching a specifically engineered material Students will work in pairs to conduct research on a specific engineered material. They’ll be tasked with creating a fact sheet or PowerPoint presentation covering all aspects of their chosen material. This includes its chemical, physical and mechanical properties, its appearance, its intended purpose, its manufacturing process, its composition, its applications, and any evolution in its function. The completed projects can then be used as a wall display or presented to the rest of the class, promoting a collaborative learning environment. The engineering context By understanding the process of engineering materials, students can appreciate the real-world implications of engineering. This activity will help them see the creativity, problem-solving, and innovation involved in engineering, inspiring them to consider a career in this exciting field. It also emphasizes the importance of engineering in our daily lives, showcasing how man-made materials contribute to various industries and applications. Suggested learning outcomes Learners will gain a deeper understanding of how materials can be designed and made for specific characteristics and purposes. They’ll be able to identify the properties of materials required for a particular function and explore a range of engineered materials, understanding why and how they have been developed. This activity not only enhances their knowledge of science, design, and technology but also nurtures their research, presentation, and teamwork skills. Download our activity sheet for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. You can download our classroom lesson plan below. Please do share your highlights with us @IETeducation.
Calculate energy use at home
IETEducationIETEducation

Calculate energy use at home

(0)
Calculating the energy used by different electrical appliances and devices within the home In this activity learners will calculate the energy usage of different electrical appliances. They will first calculate the power consumption using P = I V, then use the results of these calculations to work out how much energy each uses in kilowatt hours (kWh). This activity could be used as a main lesson activity to teach about electrical power and energy, and how each are calculated. It could also be used as part of a wider scheme of learning focussing on electricity and the National Grid or as an exercise to use mathematical skills in a practical context. This is one of a series of resources developed in association with the National Grid ESO, to allow learners to develop their knowledge and skills in Design & Technology and Engineering. This resource focusses on calculating the energy usage of different appliances and considering how this could be reduced. National Grid ESO ensure that Great Britain has the essential energy it needs by ensuring supply meets demand every second of every day. This activity is designed to take between 40-70 minutes. Tools/resources required Writing implements (pens or pencils) Calculators The engineering context Engineers have a moral and ethical responsibility to ensure that their work is sustainable and that they do not negatively impact the environment. This includes reducing energy consumption wherever possible. As such, it is important that all engineers understand how products and systems are powered and how much energy they use. Power engineering is a very important field which focusses on how energy is generated, transmitted and used by homes and businesses. There are lots of well-paid and rewarding careers available in this area. Suggested learning outcomes By the end of this free resource students will be able to calculate the power consumption of different appliances using P = I V; calculate the energy consumption of different appliances; and be able to show calculated data as part of a table. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Ergonomics and design
IETEducationIETEducation

Ergonomics and design

(0)
Analyse an existing product and how this could affect the design of a new product In this activity students will learn about ergonomics and design by analysing a wireless product using ACCESS FM. Learners will identify strengths and weaknesses and consider how to improve the product. Learning about ergonomics is a fantastic introduction to engineering for children, allowing them to step into the world of designing and improving products in a practical way. This is one of a set of resources developed to support the teaching of the secondary national curriculum, particularly KS3. It can be effectively taught within design technology (DT) as part of the curriculum for systems and control, electronic products, or product design, or through science. In this lesson, students will work in teams to conduct a product analysis of a provided wireless product, such as a TV with a remote control or a remote control car. What does ergonomics mean in design technology (DT)? In design technology (DT), ergonomics refers to the process of designing products, systems or processes to take proper account of the interaction between them and the people who use them. It’s about ensuring that designs align with the capabilities and limitations of the user, thereby enhancing efficiency and safety. The engineering context Ergonomics & design is a crucial aspect of engineering that focuses on the interaction between humans and the products, systems, or environments they use. It aims to improve these interactions by making them more comfortable, efficient, and safe. Learning about ACCESS FM helps aspiring engineers understand the multifaceted nature of product design. It equips them with the knowledge to consider all the different factors that can impact a product’s success, from its cost and aesthetics to its environmental impact and safety. This broader perspective can lead to more innovative and effective designs. Suggested learning outcomes The completion of this activity will enable students to explain how the analysis of existing products could affect the design of a new product. Students will gain a deep understanding of product design principles, the factors that influence design decisions, and how improvements can be made based on thorough product analysis. Download our activity sheets for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation